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Current reversal with type-I intermittency in deterministic inertia ratchets
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The intermittency is investigated when the current reversal occurs in a deterministic inertia ratchet system.
To determine which type the intermittency belongs to, we obtain the return map of velocities of particle by
using stroboscopic recordings, and by numerically calculating the distribution of the average laminar length
(1y. The distribution follows the scaling law df)= e~ 2 the characteristic relation of type-I intermittency.
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In the last 10 years there has been an increasing interest mittent chaotic regim¢l18]. After his work, it has been con-
the ratchet systerfil]. It has been studied theoretically and jectured that the mechanism of current reversal may be
experimentally in many different fields of science, e.g., mo-related to a crisis bifurcation in which a chaotic state sud-
lecular motors[2], new methods of separation of particles denly becomes periodicl6]. Later, it was also shown that
[3], and current-voltage rectification in asymmetric super-the current reversal, in the same system, can occur even in
conducting quantum interference devi¢ds More recently, the absence of bifurcation from chaotic to regular regime on
there have been several works on classifaland quantum the other parameter ranggs7]. However, up to our knowl-

[6] domains, Josephson-junction arf&y, and etc. edge, any further work on the detailed characteristic of the

The ratchet systerf8] is generally defined as a system intermittent behavior has not been reported.
that is able to transport particles in a periodic structure with On the other hand, the Pameau and Manneville types of
nonzero macroscopic velocitplthough on average no mac- intermittency are mainly classified into types I, Il, and Il by
roscopic force is acting9]. For directional motion of a par- the structure of the local Poincamap, v,1=v,+av
ticle with no macroscopic force, or unbiased fluctuation in at+e, vp.=(1+ e)vn+avﬁ, and v,,1=—(1+e€)v,
periodic structure, the system has to be driven away from- auf;, respectively[20]. These types of intermittency are
thermal equilibrium by an additional determinisfitO] or  characterized by characteristic relationd,yce 2 for
stochastic perturbatiofil]. Besides the breaking of thermal type-I, and<|>oce*1 for type-l and type-Il, wher€l) is the
equilibrium, the breaking of spatial inversion symmetry isaverage laminar length. Here, the parametén type-l in-
usually required further for directional moti¢h2]. For this,  termittency is the channel width between the diagonal line
the ratchet-shaped potential has been introduced. It has alg@d the local Poincarmap, while 1+ € in type-Il and type-
shown that the directional motion can exist in the presence dff| is the slope of the local Poincamap around the tangent
spatially symmetric potential with external perturbation thatpoint.
is time asymmetri¢13]. The aim of this Brief Report is to investigate the charac-

Many works on the ratchet system have been mainly lim+eristic of the intermittent behavior in the deterministic iner-
ited to the overdamped caE4]. In these works, systems of tia ratchets. We take the same system as in Red], and
interest are related to the microscopic scale in which thermagxplicitly show that the type-I intermittency exists when a
fluctuations or noises play a dominant role. Recently, Jungurrent reversal occurs from the chaotic to the regular re-
et al. have considered the effect of finite iner{ia5]. By  gime.
considering the inertia term, the dynamics can exhibit both Now, let us consider a system in which a particle moves

regular and chaotic behaviors. They have shown that deteln ratchet potential, subjected to time-periodic driving and
ministic chaos, to some extent, mimics the role of noise, andamping. The equation of motion is written as
there exist multiple current reversals as the amplitude of ex-
ternal driving is varied. Thereafter, this system has been
called “deterministic inertia ratchets,” or “deterministic un- d’> dx dV
derdamped ratchetg16,17. PRl at Tax 2 codwt), @
dt

In a recent paper, Mateos showed that the origin of the
current reversal in the deterministic inertia ratchets may be
related to a bifurcation from the chaotic to the regular re-whereb is the friction coefficient andv» anda are the fre-
gime. He also mentioned the diffusion property in the inter-quency and the amplitude of the external driving, respec-

tively. Here,V(x) in Fig. 1 is the ratchet potential, and is

given by
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FIG. 1. The asymmetric periodic potentid{x) with parameters a

C= —(sin 2mxy+0.25 sin 4rxp)/4725, %X,=-0.19, and &

~1.614 324 as in Ref18]. FIG. 3. The bifurcation diagram with varying the parameter

other parameters are fixedd=0.1 andw=0.67.

whereC andx, are introduced to show that the potential hasscopic recordings of the first derivative »fat timest=kr
a minimum atx=0 with V(0)=0, and §=sin(2rlx)  Wherek is the positive integer, and is the period of the
+sin(4m|xg|). external driving,7=2m/w. In Fig. 3 of the bifurcation dia-

Among the three dimensionless parameters in(Eg.we  gram, velocities of the particle are plotted on the parameter
vary the parametes, and fixo=0.1 andw=0.67 throughout range ofae (0.074 000 000,0.086 000 000). Note that when
this Brief Report as in Ref18]. The equation of motion, Eq. we plot this diagram, we freely take the initial point as
(1) is nonlinear. The inertia term allows the possibility of (Xo,v0)=(0,0) at timet=0 for each parametest because
chaotic orbits. We solve this system numerically, usingthere only exists a global attractor in the range above, and
fourth-order Runge-Kutta algorithms. Because of sensitivitythe long initial transient data is dropped before plotting. The
in the chaotic system above, we calculate all values and pdesult is analogous to Fig.(® in Ref. [18]. On the other
rameters including® with double precision. hand, there also exists another current reversal phenomenon

In this system, there exists a bifurcation from the chaotidn the absence of bifurcation from the chaotic to the regular
to the regular regime when the current reversal takes placegime inae (0.140000000,0.170 000 000). In this range,
through varying the parametaf18]. As shown in Fig. 2, the there are coexisting attractors and hystergks19.
particle shows intermittent chaotic behavior in the bifurca- In Fig. 3, two fixed points of velocities plotted in the
tion region. This particle moves almost regularly in a nega-bifurcation diagram ag=0.074 000000 correspond to the
tive direction, and occasionally shows chaotic burst. Furtherregular positive current of the particle having period two
more, to study the behavior of the system during the currenwhile four fixed points of velocities @ =0.080 990 000 cor-
reversal, we plot a bifurcation diagram on the velocity of arespond to theegular negative current of the particle having
particle. To obtain this bifurcation diagram, we take strobo-period four [18]. During this current reversal, there is a
period-doubling route to chaos, as shown in Fig. 3. The bi-
furcation from the chaotic to the regular regime takes place
at critical valuea,, just abovea=0.080947 42921]. After
this bifurcation, a periodic window, corresponding to the
regular negative current, emerges.

To determine which type the intermittency above belongs
to, we numerically obtain the return map}(v,), which
shows the relation between the velocities of particleand
Uns1, after 47 time interval elapses, with external driving
period 7, =2/ w. We use the value of with double pre-
cision because of the sensitivity of the chaotic system. In
Fig. 4, we plot the return map at just belay. Figure 5 is
an enlargement of Fig. 4 in the vicinity of,= —0.031. The
points on the diagonal line in the return map correspond to
27 . ' : ' ' the states ob,,,=v,, i.e., four periodic motion.

5200 5500 5800 61t00 6400 6700 7000 As shown in Fig. 5, the return map is nearly tangent to the
diagonal line at the parametarust belowa.. When a par-

FIG. 2. Forb=0.1 andw=0.67, we show the intermittent cha- ticle remains in a narrow channel, the trajectory shows an
otic trajectory of the particle aa=0.080910000 during current almost regular periodic behavior. After the particle escapes
reversal. from this narrow channel, the trajectory shows a chaotic
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. FIG. 6. The phase portrait of two attractors of the ratchet equa-
FIG. 4. The return map is plotted at the parame®r o, for h=0.1 andw=0.67: one is the chaotic attractor far

=0.080947429 just belowa;. In the vicinity of —0.110,  _( 080947429, just belowa, and the other is the period four

—0.031, 0.071, and 0.270, the return map is nearly tangent 10 thgactor fora=0.080 990 000, represented by the center of four
diagonal line. Four open circles indicate the nearly tangent regiongpen circles.

burst, and then goes back to the channel. This process keeggtained by confining the dynamics in one potential
repeating. Asa increases from the value of just bel@y to  well that includes x=0, i.e., in the range of X
a., the channel width narrows more and more so that the= (—0.374 734 43,0.625 265 57). The latter consists of four
particle spends most of the time in there. After all, the returmoints at the phase space. In the chaotic attractor, a particle
map crosses the diagonal line, whemecomes larger than spends most of the time in the vicinity of four point attractors
a., and two crossing points, corresponding to the stable angorresponding to the regular negative current. Once in a
unstable fixed points, are made. Among these points, th@hile it intermittently moves in a chaotic way.
stable fixed point corresponds to the regular negative current So far, we have investigated the type of intermittency
of the particle. Like this, the intermittency emerges, beforequalitatively. For a quantitative characterization of the type
the return map undergoes a tangent bifurcation. This analysisf intermittency, we survey the scaling law for duration of
agrees well with the result shown in Fig. 6, which is similar the laminar state. That means the particle remains in the
to that of Mateog18]. narrow channel, as shown in Fig. 5. We calculate the average
In Fig. 6, one of two attractors is the chaotic one &r |aminar length(l) by averaging the iterated numbers of the
=0.080947 429, just below,, and the other is the period return map at the laminar state, ashanges from the range
four attractor fora=0.080990000, corresponding to the of belowa, to a.. Numerically, we take the laminar state as
regular negative current. Note that these two attractors are
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FIG. 5. The enlargement of Fig. 4 in the vicinity af

=—0.031. The return map seems nearly tangent to the diagonal FIG. 7. The distribution of the average laminar length with vary-
line, but it is not exactly tangent. The channel width between theng the parametea. It follows the scaling law of(1)o e~ 2 with
return map and the diagonal line is in the order of 0.000 001. e=a—a..
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scaling law giving the characteristic relation of intermittency,

than 0.0003. The result has been shown in Fig. 7. The disne have explicitly shown that the type-I intermittency exists
tribution of the average laminar length follows the scalingwhen the current reversal occurs from the chaotic to the

law of (1)< e~ Y2 with e=a—a.. It agrees with that the dis-

tribution of the average laminar length of the type-I intermit-
tency is in the form{l)o e~ Y2 if there are no external noises

regular regime.
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current reversal in deterministic inertia ratchets. By numeri

Kim for valuable discussions. This work was supported by
the Creative Research Initiatives of the Korean Ministry of
&cience and Technology. Two of (8/.-S.S and Y.-J.P.ac-

knowledge support from the Sogang University Research

cally obtaining the return map of velocities, and by using theGrants in 2003.

[1] P. Reimann, and P. agi, Appl. Phys. A. Mater. Sci. Process.
A75, 169(2002, and references therein; R.D. Astumian and P.
Hanggi, Phys. Toda5 (11), 33 (2002.

[2] R.D. Astumian and M. Bier, Phys. Rev. LeT2, 1766(1994);
Biophys. J.70, 637 (1996.

[3] J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Natumn-
don) 370, 446(1998.

[4] 1. Zapata, R. Bartussek, F. Sols, and Pnbigi, Phys. Rev. Lett.
77, 2292(1996.

[5] C.J. Olson, C. Reichhardt, B. Jankand F. Nori, Phys. Rev.
Lett. 87, 177002(2002).

[6] P. Reimann, M. Grifoni, and P. liagi, Phys. Rev. Let79, 10
(1997); M. Grifoni, M.S. Ferreira, J. Peguiron, and J.B. Majer
ibid. 89, 146801(2002; J.B. Majer, J. Peguiron, M. Grifoni,
M. Tusveld, and J.E. Mooijibid. 90, 056802(2003.

[7] K.H. Lee, Appl. Phys. Lett83, 117 (2003.

[8] In analogy with the ratchet system consideredlbg Feynman
Lectures on Physi¢d/ol. I, Chap. 46 in discussing the devices
that are in contradiction with the second law of thermodynam-
ics, these systems are also called ratchets.

[9] P. Hanggi and R. Bartussek, iNonlinear Physics of Complex

)

[12] P. Reimann, Phys. Rep61, 57 (2002.

[13] K. Seeger and W. Maurer, Solid State Comm@7, 603
(1978.

[14] R. Bartussek, P. Hwgi, and J.G. Kissner, Europhys. Le28,
459 (1994).

[15] P. Jung, J.G. Kissner, and P.tmi, Phys. Rev. Let{76, 3436
(1996.

[16] C.M. Arizmendi, F. Family, and A.L. Salas-Brito, Phys. Rev. E
63, 061104(2002.

[17] M. Barbi and M. Salerno, Phys. Rev.@, 1988(2000.

[18] J.L. Mateos, Phys. Rev. Le®4, 258 (2000.

[19] J.L. Mateos, Physica 825 92 (2003.

[20] P. Manneville and Y. Pomeau, Phys. L&%A, 1(1979; B. Hu
and J. Rudnick, Phys. Rev. Let18, 1645(1982.

[21] In Ref. [18], Mateos showed the critical parameter value,
a.=0.080 928 44 by usingg=1.6. The difference with our
result is due to the parameter valué. We use &
=1.614 323 591 816 94 with double precision for satisfactory
results on the return map of velocities in Fig. 5 and the distri-
bution of average laminar length in Fig. 7.

Systemsedited by J. Parisi, S.C. Muller, and W. Zimmermann, [22] C.-M. Kim, O.J. Kwon, E.-K. Lee, and H. Lee, Phys. Rev.

Lecture Notes in Physics Vol. 471&pringer, Berlin, 1998 pp.
294-308.

[10] M.O. Magnasco, Phys. Rev. Le#t1, 1477(1993; I. Derenyi
and T. Vicsek,ibid. 75, 374 (1995.

[11] R. Bartussek, P. Reimann, and P.nggi, Phys. Rev. Lett76,
1166(1996; T.E. Dialynas, K. Lindenberg, and G.P. Tsironis,
Phys. Rev. E56, 3976(1997).

Lett. 73, 525 (1994); C.-M. Kim, G.-S. Yim, J.-W. Ryu, and
Y.-J. Park,ibid. 80, 5317 (1998; I. Kim, C.-M. Kim, W.H.
Kye, and Y.-J. Park, Phys. Rev.@, 8826(2000.

[23] W.H. Kye and C.-M. Kim, Phys. Rev. 62, 6304(2000; J.-H.

Cho, M.-S. Ko, Y.-J. Park, and C.-M. Kimbid. 65, 036222
(2002; H.L.D. de S. Cavalcante and J.R. Rios Leits¢. 66,
026210(2002.

067201-4



