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Current reversal with type-I intermittency in deterministic inertia ratchets
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The intermittency is investigated when the current reversal occurs in a deterministic inertia ratchet system.
To determine which type the intermittency belongs to, we obtain the return map of velocities of particle by
using stroboscopic recordings, and by numerically calculating the distribution of the average laminar length
^ l &. The distribution follows the scaling law of^ l &}e21/2, the characteristic relation of type-I intermittency.
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In the last 10 years there has been an increasing intere
the ratchet system@1#. It has been studied theoretically an
experimentally in many different fields of science, e.g., m
lecular motors@2#, new methods of separation of particle
@3#, and current-voltage rectification in asymmetric sup
conducting quantum interference devices@4#. More recently,
there have been several works on classical@5# and quantum
@6# domains, Josephson-junction array@7#, and etc.

The ratchet system@8# is generally defined as a syste
that is able to transport particles in a periodic structure w
nonzero macroscopic velocity~although on average no mac
roscopic force is acting! @9#. For directional motion of a par
ticle with no macroscopic force, or unbiased fluctuation in
periodic structure, the system has to be driven away fr
thermal equilibrium by an additional deterministic@10# or
stochastic perturbation@11#. Besides the breaking of therma
equilibrium, the breaking of spatial inversion symmetry
usually required further for directional motion@12#. For this,
the ratchet-shaped potential has been introduced. It has
shown that the directional motion can exist in the presenc
spatially symmetric potential with external perturbation th
is time asymmetric@13#.

Many works on the ratchet system have been mainly l
ited to the overdamped case@14#. In these works, systems o
interest are related to the microscopic scale in which ther
fluctuations or noises play a dominant role. Recently, J
et al. have considered the effect of finite inertia@15#. By
considering the inertia term, the dynamics can exhibit b
regular and chaotic behaviors. They have shown that de
ministic chaos, to some extent, mimics the role of noise,
there exist multiple current reversals as the amplitude of
ternal driving is varied. Thereafter, this system has b
called ‘‘deterministic inertia ratchets,’’ or ‘‘deterministic un
derdamped ratchets’’@16,17#.

In a recent paper, Mateos showed that the origin of
current reversal in the deterministic inertia ratchets may
related to a bifurcation from the chaotic to the regular
gime. He also mentioned the diffusion property in the int
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mittent chaotic regime@18#. After his work, it has been con
jectured that the mechanism of current reversal may
related to a crisis bifurcation in which a chaotic state su
denly becomes periodic@16#. Later, it was also shown tha
the current reversal, in the same system, can occur eve
the absence of bifurcation from chaotic to regular regime
the other parameter ranges@17#. However, up to our knowl-
edge, any further work on the detailed characteristic of
intermittent behavior has not been reported.

On the other hand, the Pameau and Manneville type
intermittency are mainly classified into types I, II, and III b
the structure of the local Poincare´ map, vn115vn1avn

2

1e, vn115(11e)vn1avn
3 , and vn1152(11e)vn

2avn
3 , respectively@20#. These types of intermittency ar

characterized by characteristic relations,^ l &}e21/2 for
type-I, and^ l &}e21 for type-II and type-III, wherê l & is the
average laminar length. Here, the parametere in type-I in-
termittency is the channel width between the diagonal l
and the local Poincare´ map, while 11e in type-II and type-
III is the slope of the local Poincare´ map around the tangen
point.

The aim of this Brief Report is to investigate the chara
teristic of the intermittent behavior in the deterministic ine
tia ratchets. We take the same system as in Ref.@18#, and
explicitly show that the type-I intermittency exists when
current reversal occurs from the chaotic to the regular
gime.

Now, let us consider a system in which a particle mov
in ratchet potential, subjected to time-periodic driving a
damping. The equation of motion is written as

d2x

dt2
1b

dx

dt
1

dV

dx
5a cos~vt !, ~1!

whereb is the friction coefficient andv and a are the fre-
quency and the amplitude of the external driving, resp
tively. Here,V(x) in Fig. 1 is the ratchet potential, and
given by

V~x!5C2
sin 2p~x2x0!10.25 sin 4p~x2x0!

4p2d
, ~2!
©2003 The American Physical Society01-1
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whereC andx0 are introduced to show that the potential h
a minimum at x50 with V(0)50, and d5sin(2pux0u)
1sin(4pux0u).

Among the three dimensionless parameters in Eq.~1!, we
vary the parametera, and fixb50.1 andv50.67 throughout
this Brief Report as in Ref.@18#. The equation of motion, Eq
~1! is nonlinear. The inertia term allows the possibility
chaotic orbits. We solve this system numerically, us
fourth-order Runge-Kutta algorithms. Because of sensitiv
in the chaotic system above, we calculate all values and
rameters includingd with double precision.

In this system, there exists a bifurcation from the chao
to the regular regime when the current reversal takes p
through varying the parametera @18#. As shown in Fig. 2, the
particle shows intermittent chaotic behavior in the bifurc
tion region. This particle moves almost regularly in a neg
tive direction, and occasionally shows chaotic burst. Furth
more, to study the behavior of the system during the curr
reversal, we plot a bifurcation diagram on the velocity o
particle. To obtain this bifurcation diagram, we take strob

FIG. 1. The asymmetric periodic potentialV(x) with parameters
C52(sin 2px010.25 sin 4px0)/4p2d, x0520.19, and d
.1.614 324 as in Ref.@18#.

FIG. 2. Forb50.1 andv50.67, we show the intermittent cha
otic trajectory of the particle ata50.080 910 000 during curren
reversal.
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scopic recordings of the first derivative ofx at timest5kt
where k is the positive integer, andt is the period of the
external driving,t52p/v. In Fig. 3 of the bifurcation dia-
gram, velocities of the particle are plotted on the parame
range ofaP(0.074 000 000,0.086 000 000). Note that wh
we plot this diagram, we freely take the initial point a
(x0 ,v0)5(0,0) at timet50 for each parametera because
there only exists a global attractor in the range above,
the long initial transient data is dropped before plotting. T
result is analogous to Fig. 2~a! in Ref. @18#. On the other
hand, there also exists another current reversal phenom
in the absence of bifurcation from the chaotic to the regu
regime in aP(0.140 000 000,0.170 000 000). In this rang
there are coexisting attractors and hysteresis@17,19#.

In Fig. 3, two fixed points of velocities plotted in th
bifurcation diagram ata50.074 000 000 correspond to th
regular positive current of the particle having period tw,
while four fixed points of velocities ata50.080 990 000 cor-
respond to theregular negative current of the particle havin
period four @18#. During this current reversal, there is
period-doubling route to chaos, as shown in Fig. 3. The
furcation from the chaotic to the regular regime takes pla
at critical valueac , just abovea50.080 947 429@21#. After
this bifurcation, a periodic window, corresponding to t
regular negative current, emerges.

To determine which type the intermittency above belon
to, we numerically obtain the return map,f 4(vn), which
shows the relation between the velocities of particle,vn and
vn11, after 4t time interval elapses, with external drivin
periodt, t52p/v. We use the value oft with double pre-
cision because of the sensitivity of the chaotic system.
Fig. 4, we plot the return map at just belowac . Figure 5 is
an enlargement of Fig. 4 in the vicinity ofvn520.031. The
points on the diagonal line in the return map correspond
the states ofvn115vn , i.e., four periodic motion.

As shown in Fig. 5, the return map is nearly tangent to
diagonal line at the parametera just belowac . When a par-
ticle remains in a narrow channel, the trajectory shows
almost regular periodic behavior. After the particle esca
from this narrow channel, the trajectory shows a chao

FIG. 3. The bifurcation diagram with varying the parametera,
other parameters are fixed,b50.1 andv50.67.
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burst, and then goes back to the channel. This process k
repeating. Asa increases from the value of just belowac to
ac , the channel width narrows more and more so that
particle spends most of the time in there. After all, the ret
map crosses the diagonal line, whena becomes larger than
ac , and two crossing points, corresponding to the stable
unstable fixed points, are made. Among these points,
stable fixed point corresponds to the regular negative cur
of the particle. Like this, the intermittency emerges, befo
the return map undergoes a tangent bifurcation. This ana
agrees well with the result shown in Fig. 6, which is simi
to that of Mateos@18#.

In Fig. 6, one of two attractors is the chaotic one fora
50.080 947 429, just belowac , and the other is the perio
four attractor for a50.080 990 000, corresponding to th
regular negative current. Note that these two attractors

FIG. 4. The return map is plotted at the parametera
50.080 947 429 just belowac . In the vicinity of 20.110,
20.031, 0.071, and 0.270, the return map is nearly tangent to
diagonal line. Four open circles indicate the nearly tangent regi

FIG. 5. The enlargement of Fig. 4 in the vicinity ofv
520.031. The return map seems nearly tangent to the diag
line, but it is not exactly tangent. The channel width between
return map and the diagonal line is in the order of 0.000 001.
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obtained by confining the dynamics in one potent
well that includes x50, i.e., in the range of x
P(20.374 734 43,0.625 265 57). The latter consists of fo
points at the phase space. In the chaotic attractor, a par
spends most of the time in the vicinity of four point attracto
corresponding to the regular negative current. Once i
while it intermittently moves in a chaotic way.

So far, we have investigated the type of intermitten
qualitatively. For a quantitative characterization of the ty
of intermittency, we survey the scaling law for duration
the laminar state. That means the particle remains in
narrow channel, as shown in Fig. 5. We calculate the aver
laminar lengtĥ l & by averaging the iterated numbers of th
return map at the laminar state, asa changes from the rang
of belowac to ac . Numerically, we take the laminar state a

FIG. 7. The distribution of the average laminar length with va
ing the parametera. It follows the scaling law of̂ l &}e21/2 with
e5a2ac .
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FIG. 6. The phase portrait of two attractors of the ratchet eq
tion for b50.1 andv50.67: one is the chaotic attractor fora
50.080 947 429, just belowac and the other is the period fou
attractor fora50.080 990 000, represented by the center of fo
open circles.
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the situation that the difference betweenvn11 andvn is less
than 0.0003. The result has been shown in Fig. 7. The
tribution of the average laminar length follows the scali
law of ^ l &}e21/2 with e5a2ac . It agrees with that the dis
tribution of the average laminar length of the type-I interm
tency is in the form̂ l &}e21/2 if there are no external noise
@20,22,23#. Therefore, the intermittency that exists before t
bifurcation taking place from the chaotic to the regular
gime is the type-I intermittency.

In conclusion, we have investigated the mechanism of
current reversal in deterministic inertia ratchets. By nume
cally obtaining the return map of velocities, and by using
s.
P
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,
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x
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scaling law giving the characteristic relation of intermittenc
we have explicitly shown that the type-I intermittency exis
when the current reversal occurs from the chaotic to
regular regime.
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